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A one~dimensional single phase problem with a free boundary for the equation
of heat conduction is studied, One of the conditions of the free boundary isnon-
linear, Theorems of existence and uniqueness of solutions of the problem are
proved, Sufficient conditions of stability of the solution under the perturbation
of the initial parameters are derived for the case when the solution of the prob-
lem is of a stationary wave type.

We consider the following problem with a free boundary:

Ty = Tyx in the region (L
D{—owo<z<s(@),0<t<<A}

T|t=0 =f (.‘t), T|x=s(t) =1, T;:_’;‘: 0 (2)
S@O=—u@@, T.(s@® ), sO=0 3

The problem occurs in one-~dimensional theory of powder burning at a constant surface
temperature (see [1, 21). The function T (z, f) represents the temperature of the pow-
der, u is the rate of combustion and s (¢) is the coordinate of the powder surface at the
instance ¢. The functions 7' (z, £) and s (£) are to be determined,

The problem (1) —(3) differs from the classical Stefan's problem in the fact that the
relation (3) connecting s’ (f) with T, (s (f), ) is nonlinear, The specified function
p () appearing in (3), describes the pressure in the gaseous phase (z > s (£)) contain-
ing the products of gasification of the powder and in the burning products,

Let us assume that p ({) & C [0, 4], p (¢) > O; the function u (p, ¢), where @
is the temperature derivative at the boundary s (¢), is defined and continuous in the re-
gion {0 <p<<oo, 0L 9<Coo}. Letalso O u(p, @) < M, forall p and9.

Theorem 1. Let f ()& C*(— 0,0}, f and f/ - 0 as z > — oo and
" () be a bounded function; f(0) = 1, 0 < f (x) < 1. Then a solution T' (z, ?),
$ (2) of the problem (1) —(3) exists in the region D such that T (z, ) = Ch1( Dy N
cDyeén), r.ec( UoaD), Tand T'y,~—>0 as £ — — oo uniformlyin ¢ &
[0, Al; s (1) = €' 0, Al

Proof. We denote by G the region {— o0 <z <<0,0<<t< A}, by H the
closure of G ,and consider in G the following boundary value problem;

Ty =Tep —v(t) Ty 4)
Tlimo=1(@), Tlem=1, T7720 )
where v (1) & C [0, 4], 0< v (1) << M,. We formulate the auxiliary lemma,
Lemma 1, A unique solution T (z, £) of the problem (4),(5) exists in G suchthat
Ty GNCWH), 0<T(x, )<, Tand Ty as z—> —
oo uniformly in ¢ & {0, A].
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88 A, 1, Suslov

Proof, Assume that

v() e [0, 4], [ (s) € C%(— o0, 0] (6)
with some constant « & (0, 1), and that in addition
f(0) —v(0) f(0) =0. N

Then by Theorem 5,2, ch, 4 of [3] there exists in the region @ a unique solution T (z,
t) of the problem (4), (5) belonging to the class c*e (H). By Theorem 10, ch, 3 of [4],
Eq. (4) can be differentiated in the region G with respect to z, any number of times,
Using the maximum principle, we can show that 0 < T (x, ) < 1 , consequently
T (0, t) > 0. Weset @ (z) = (x 4+ )™ /I™. By virtue of the properies of f(z) the
number 7> 0 and the integer m can be chosen so that f(2) > ® (z) for — Iz << 0.
From the maximum principle it follows that T (z, ¢) > @ () in the region {— I 2 <
0, 0 < t < A}, provided that m is sufficiently large , therefore T (0, t)<m /1. Differ-
entiating Eq, (4) with respect to z and applying the maximum principle, we obtain

| Tx | Smax { max | f'(2) |, mfl} (8

When p and f satisfy the conditions (6) and (7), Eq. (4) holds in the closed region H,
and 0 < Ty (0,8) < mM, /1. In the manner similar to the estimate (8), we obtain the

meq!-lallt}’ | Txx | < max {sup| 7 (z) [, mMy/i} ) (9

Let us integrate the Green's identity for the functions T (§, 1) — 1 and the fundamental
solution 1 ! 3
IR . s S——— —— — - —
K(xr DE T) ZVﬂ_——(t-—T)exp[ (a7 E §v(y)dy) 4(t :l‘)]

of Eq, (4) over the region (e <t <t — g, — o0 <& <0} Passing to the limit with
g — 0, we obtain t 0
T (z,t)—1 =STE(O.1)K(z,t;O.t)df + S f ) —11K (& £ £,00dE  (10)
1] —00

Differentiating (10) with respect to  and taking into account the fact that Ky = — Ky,
we arrive at the equation ‘ .
T, (= t)mSTE(O, K, (z,80,v)dv 4 S /() K (z, 5 E,0)df (1D
0 —c

From (8),(10) and (4) it follows that 7, Tx— 0 as z — — oo uniformly in ¢ & [0, 4],
provided that f and f — 0 as z — — oco. Further, by virtue of Theorem 4, ch. 7 of [4],
the following inequality holds for any § < (0,1) ¢

1T U prss gy < BrlHlox—os, 01 (12)

Here the constant By depends on 3, M,, 4.
Thus we have proved the lemma under the additional restrictios (6),(7) imposed on
v (t) and f(z). ‘

In the general case we approximate the functions v and f with the functions vy {f)
and f; (z) satisfying the conditions (6) and (7). Moreover, 0  vx (8) < Moy v (8) — v ()
as k — oo uniformly on [0, 4], fx {(z) — f (2} as k — oo Over the norm (7 (— oo, 0].

Let us now consider the boundary value problem (4),(5) with v () replacing v (¢) in
Eq. (4) and fx (z)sreplacing f (z) in the initial conditions (5). We have shown above that
this problem has a solution 7, < €?** (H) and the estimates (8),(9) and (12) hold for
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Ty . From (9) it follows that the derivatives Ty,, are bounded by constants independent
of % Letus denote by G a set of points (z, t) = G separated from the boundary of &
by a distance not less than p. Using the method of [5] one can estimate in G° the de-
rivatives Ty,., using a constant depending on M,, sup| Ty.x | and p only, Thelem=
ma 6 of [6] implies that in the region % the function Tkxx is HBlder continuouswith
the exponent equal to 2/, and Holder constant independent of k. It follows therefore
that a subsequence k, — oo can be found such that Ty, — T, Ty o — Tx uniformlyin
H and  Tgex — Txx uniformly in the region 6% N {z > — N}, where N >1 is
any number, It can be shown that T (z, t) is a unique solution of (4),(5), T andT, —
0 as # — — oo uniformly in ¢ & [0, 4] and in addition the estimate (12) holds for T.
This completes the proof of Lemma 1,

Let CL° (H) be a Banach space of functions epntinuous in H together with their de-
rivatives in z, with the norm

1T o =17 e + 1 Tx fe

We denote by Vg a set of functions 8 & C1.0 (H) such that 6 (z, 0) = f (z), 0 (0,
t)=1,0< 0z, t)<<1 and |0} K ,and consider in G a boundary value
problem for the following equation with the boundary conditions (5)

Ty=Tee—u(p@®, 6,0 )T 08(z, )E Vk (13)

According to Lemma 1, there exists a unique solution T (z, ) of the problem (5),
(13), 0 Ty (x, t) << 1 and the estimates (8) and (12) hold for T'y. Therefore we
can define on the set V a transformation F placing the function § & Vi in corre-
spondence with the solution Ty (z, ?) of the problem (5), (13). From (8) it follows that
for sufficiently large K we have the inclusion FVg.C V. Using (12) and the fact
that 7, - () a8 z — — oo ,we can show that the set FVy is compact in CL0 (H).
The operator F is continuous on Vk. Indeed,let T; = FO;, u; () = u (p (£), 9;x (0,
1), 0;= Vg, i = 1,2, Weset z = I, — T, The function z (z, t) satisfies the equa-
tien 8 = fxg — Uy (1) 5 — [uy/ (1) — g ()] T
and the homogeneous boundary conditions, Therefore the following estimate holds;
I|ZIICI+5(H) < By (ug — uy) Tox HC(H) (14)

which is similar to the estimate (12). Here B, depends on 8, M,, A. Let us assume
that | 6; — 0, |0 < ¥- Then

max |6, (0, t) — 0, (0, ¢

8T |81z (0, 1) — 6 (0, | <7

Since the function u (p, ) is continuous with respect to its arguments, then | u, (¢) —
ug ()] < & (y). Therefore the continuity of the operator F follows from the inequality
(14).

The set Vi is closed and convex in C1.0 (H). Consequently by the Schauder theo-
rem the operator F has a fixed point T, (z, t) in Vg. The function T, (x, ) satis-

fies the equation Ty=Te—u(p @), Te O, t) T, (15)

and conditions (5), Let us set ‘

s@)=—Su(p(r), Tyx (0, v) dr
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and perform the change of variables ¢ == #, ' = z -+ s (f). The functions 7,° (2',
1) =Ty (' — s (2), £) and s (¢) represent a solution of the problem (1) —(3). This
completes the proof of Theorem 1.

when u (p, (p) are subjected to more severe restrictions, methods of [7] can be used
to establish the theorem of existence and uniqueness of the solution of the problem (1)—
(3), relaxing , at the same time, the restrictions imposed on f (2):

Theorem 2, If u (p, @) is continuous in p and Lipschitz-continuous in @, 0 <
b My f@EC (—o, 0, 0<fE@<E, [0 =1, f@—>0 as
Z — — oo, then a unique solution 7" (z, ¢), s (¢) of the problem (1) — (3) exists in
the region D suchthat T &= 21 (D) ) C (D |Y aD), s C' [0, Al

If p)=1, u(1, 1) =1 and f(z) = ¢, then the solution of (1) — (3) is of
the stationary wave type T’ = e**!, s (f) = —2. The problem of stability of the sta-
tionary solution under the perturbations of the initial temperature distribution f (z) is
of interest, Below we formulate and prove a theorem which gives sufficient conditions
of existence of a stationary solution under a constant pressure,

Theorem 3, If p () =1, |f" (z)| < Me** where a > 0, the function
u (@)= u (1, @) isHdlder~continuous and decreases monotonously in @ when ¢ >
0, then u (T (s (¢), £)) = 1 as £ — oo, and the graph of T (2, ) as a function of
T assumes, as  —>» oo, the form of the graph of the function e* as nearly as required,

Proof. It is sufficient to show that if T (z, f) is a solution of the problem (5),(15),
then [T (z, ) — ¢“]—> 0 as ¢ — oo uniformly in z €& (— oo, 0] and u (2) =
u (T (0, §)) > 1 as t— oo,

Let r=T (x, 1) — e g=ry= T, (, t) - ¢¥, The functions r and g
satisfy, in the region G ,the equations

ry=rex—uU(f)rs— (u () — 1€ (16)
g = Qux — U () gz — (@ (&) — 1) € (17
In addition, we have r (0, )=0, r— 0 a z —> — oo.

We multiply (16) by r, (17) by g, sum the resulting expressions and integrate withre~

spect to z from — oo to §, Since
o

S [(w—1)er + (u— 1) e*qldz =

0 0
@—1) § (@r+eryae=w—1) \ (@reds=0
we have _“ o
s 0 P2 0
¥ S —g—dr = — S (sz—{jrix)dx"l-

T2 (0, ) Tax (0, ) — —-7.2 (0, 1)

Since by virtue of (12) u (@) and Ty (0, ?) are Holder-continuous with respect to
their arguments, the function u BH=u (T« 0, 1)) is HOlder-continuous in £, From
the results of [8] it follows that in this case Eq, (15) holds in the closed regions H
{t > p}, p > 0. Consequently, 7. (0, t) = u (t) 75 (0, £) + u (f) — 1 when
t >0 and
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[ [

2
A T go— - { o+t do+ (18)

8t

—0

512 (0,0) + ( — D). (0, )

when ¢ >> 0. Using the maximum principle we can obtain,from the conditions | f” () | <
Me*= the inequalities | T, Ty, Tux|<C Mye®*. Therefore all integrals appearing
in (18) are meaningful and the order of differentiation with respect to ¢ and integration
with respect to x can be reversed,

We shall show that the right-hand side of (18) is nonpositive, Since the functionu (@)
decreases monotonously and % (1) = 1 for all ¢ > 0 ,inequality (& (£) — 1) . (0,
t) << O holds, Let us estimate the term u (2) r,? (0, £) /2 using other terms with
the corresponding sign, If w (£,) > 2, then Q< T, (0, t,) < 1 ,consequently
—1 <« 7, (0, §,) <0. From this we have

—u%")" re? (0, 1) 4 (@ () — 1)1 (0, &) (19)
Irx(O,tx)l{\ﬁ-z{i‘l —u(ty)+ i> = §"x{‘3sfz)l(i—- _E‘_g_x_)_)<{}

Let u (2,) <C 2. Since , 0
aé)rﬁ(@, t) = S u)ry(x, ree(z, ) dz
we have 0
u—(zti) rat (0a lg) — S [re (, ) + Tix (x, t2)] dr = (20)

0
- S (rs® — urgres + r?c:x:) lt—_—t,dw <0
e Y
From (19) and {20) the nonpositiveness of the right-hand side of (18) follows. Let us now
set 0 2 +r,2
gt)= S 5 dz
o
Since g () > 0 and, as was shown above, g’ () < 0 for all ¢ > (, it follows that
%,’:.n.% g ) =gy > 0 exists.
Suppose that g9 > 0. Sincer (0, t) = 0, the following inequality holds:

§ ride < (%—yh( § iridxjh( § rgds:)u‘ 2D

The inequality (21) can be proved in the manner analogous to that of Theorem 2, 2, ch, 3,
of [3]. Since 0 < T < Mye®*, we have o

Sirle<s,

where B, is independent of £, Therefore from (21) it follows that
0

S rxgdx > &1 > 0
for all £ > 0, provided that g, > 0, —*
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Let us separate the half-line {f >> 0} into three sets: S§; = {#: u (f) > 2}, S, =
{t: 3 <u(t) <2}, S3 = {t: u (f) < ¥,}. The following inequality holds for
te S, 0

g — | rdde<—g <0 (22)
From a property of (@) it follows that r (0, ) << —g, <C 0, provided that 3/, <
u (t) << 2. Taking into account (20), we obtain

EO<@w—1Dr0 )< —g/2 (29)
for & §p. When fe Sy wehave
’ 7 7
< —5 | rde< — 5 a0 (29

The inequalities (22)~(24) were obtained under the assumption that g, > 0. Itfollows
from these inequalities that g’ (£) << —g3 <C O for all ¢ > 0 and that g— — oo
as { —» o0, Thus the assumption that g, > 0 leads to contradiction, Therefore g5 = 0
and 0

lim S r’dz =0, lim § r.2dx =0

w00 twoo __
0

r®= ~—-§2rrxdm< S (rt+r2)dz

0

Since

r—» Q0 as ¢ —» oo uniformly in z. The boundedness of the derivative ry, and the fact
that r (0, £) = 0 ,imply that ry (0, £) = O as ¢ > co. Therefore T, (0, £) > 1
and u (£) - 1 as ¢ - oo, This completes the proof of Theorem 3,
The author thanks O, A, Oleinik and V, B, Librovich for the attention given and the
valuable comments,
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