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A one-dimensional single phase problem with a free boundary for the equation 

of heat conduction is studied, One of the conditions of the free boundary isnon- 

linear. Theorems of existence and uniqueness of solutions of the problem are 

proved. Sufficient conditions of stability of the solution under the perturbation 
of the initial parameters are derived for the case when the solution of the prob- 

lem is of a stationary wave type, 

We consider the following problem with a free boundary: 

Tt = T,, in the region (1) 

D{ --<(r<s(t),O<t<A) 

Tit=o = f (z), T jr=s(t) = 1, 2’ =_,’ 0 (2) 

s’ (t) = -u (p (t), T, (8 (0, t)), s (0) = 0 (3) 

The problem occurs in one-dimensional theory of powder burning at a constant surface 

temperature (see [l, 21). The function T (2, t) represents the temperature of the pow- 
der, u is the rate of combustion and s (t) is the coordinate of the powder surface at the 

instance t. The functions T (8, t) and s (t) are to be determined. 

The problem (1) - (3) differs from the classical Stefan’s problem in the fact that the 
relation (3) co~e~ting S’ (t) with T, (s (t), t) is nonlinear. The specified function 
p (t) appearing in (3), describes the pressure in the gaseous phase (z > s (t)) contain- 

ing the products of gasification of the powder and in the burning products. 

Let us assume that P (t) E C IO, Al, p (t) > 0; the function u (p, cp), where Q, 
is the temperature derivative at the boundary a (t), is defined and continuous in the re- 

gion {O<p<m, O<cp<oo}. Letalso O<u(p,cp)<~~ forallpandrp. 
Theorem 1. Letf(z)EC2(--,o],f and f’+O as x+-oo and 

f” (xl be a bounded function; f (0) = 1, 0 4 f (x) & 1. Then a solution T (5, t), 
S (t) of the problem (1) - (3) exists in the region D such that T (z, t) E C% 1 (D) fl 
C(DIJ~D),T,EC(DU~D), TandT,-,Oass+--oouniformlyintE 

[O, Al;’ s (t) E Cf IO, AI. 
Proof. We denote by G the region {- m<z<O,O<t< A), by Bthe 

closure of G , and consider in G the following boundary value problem: 

Tt = Tzx - u (0 Tee (4) 

T 1 t=o = f (N, T 1 s==o = 1, Tsz 0 (5) 

where v (t) E C LO, Al, 0 sg u 0) < MO. We formulate the auxiliary lemma. 
Lemma 1. A unique solution 2’ (z, t) of the problem (4),(5) exists in G such that 

T ts, t) 6~ 6”s ’ (Gf n W8 (H), 0 ,( T (.z, t) < 1, T and T, 3 o as x -+- - 
00 uniformly in t E IO, A]. 
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Proof. Assume that 
0 (2) E C=@ r0, Al, F (z) E Ca (- 00, 01 (6) 

with some constant a E (0, 1) t and that in addition 

r (0) - V (0) f’ (0) = 0. c-u 

Then by Theorem 5.2, ch, 4 of [3] there exists in the region G a unique solution T (2, 

t) of the problem (4)‘ (5) belonging to the class ca’” (H), By Theorem 10, ch, 3 of [4], 
Eq. (4) can be differentiated in the region G with respect to x , any number of times. 

Using the maximum principle, we can show that Q < T (x, t) 6 1 , consequently 
TX (0, t) & 0. We set Q, (5) = (5 + V lZm. By virtue of the properies of f (5) the 
number I> 0 and the integer m can be chosen so that f (x) 3 @ (x) for - 16 x 4 0. 

From the maximum principle it follows that 2’ (5, t) > @ (r) in the region (- 2 < z Q 
0, 0 < t 4 A 1, provided that m is sufficiently large, therefore Tz (0, Km / 2. Differ- 

entiating Eq. (4) with respect to x and applying the maximum principle, we obtain 

] TX I < max { max I f’ (4 I, m/l) (8) 

When o and f satisfy the conditions (6) and (7), Eq. (4) holds in the closed region H, 

and 0 < T,, (0,t) < mMo / 1. In the manner similar to the estimate (8), we obtain the 

inequality 
I Tm I d max {sup I f” (4 I, mM,,/Z) _ (3 

Let us integrate the Green’s identity for the functions T (g, z) - 4 and the fundamental 

solution 1 
K (% t; 4. z) = .-exl[-(x-~-j#(~i~~~/*(t-~~] 

2‘)/n(t --z) 
z 

of Eq. (4) over the region {e < a < t - e, - CO < E < 0). Passing to the limit with 

s + 0, we obtain t 

T&t)--l= pyo,z)R(r,f;o”wz + “s [f(f)-~lK(%t;e,o,~e (10) 
0 

afferenaating (lo) with respect to E and taking int~~ccount the fact that &J = - Kc, 

we arrive at the equation t 

~~(~:~)=s~~to,~)~~( xec0,edZ+ j: f’(~)~(~,~;~,o)~~ (=I 
0 

From (8),(10) and (4) it follows that T, T,: 4 0 as 3 ,I 00 uniformly in t E [O, A], 

provided that f and f’ M 0 as x + - =. Further, by virtue of Theorem 4, ch. 7 of [43, 

the following inequality holds for any & e (0,1) : 

Here the constant B, depends on 8, M,, A. 
Thus we have proved the lemma under the additional restrictiods (6),(7) imposed on 

IJ (t) and f(z). 
In the general case we approximate the functions v and f with the functions vf, (t) 

and fk (z) sat~fying the condition (6) and (7). Moreover, 0 F 9 (t) f MO, & (t) - v (t) 
as k - 00 uniformly on [O, A], fk (z) -+ f(s) as k - CO over the norm 0 f- “3, O]. 

Let us now consider the boundary value problem (4),(5) with vlc (t) replacing v (t) in 
Eq. (4) and fk (2) f replacing f (=) in the initial conditions (5). We have shown above that 
this problem has a solution Tb E C 2+a (H) and the estimates (8), (9) and (12) hold for 
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Tk . From (9) it follows that the derivatives Tkxx are bounded by constants independent 

of k. Let us denote by Gp a set of points (5, t) EZ G separated from the boundary of G 
by a distance not less than p. Using the method of [5] one can estimate in Cp the de- 

rivatives Tkxzx using a constant depending on M,, sup 1 &,.. 1 and p only. Thelem- 

ma 6 of [S] implies that in the region G s+~ the function Tlrrx is HNder continuous with 

the exponent equal to a/s and Hiilder constant independent of k. It follows therefore 
that a subsequence b -_) 00 can be found such that Tk,, 4 T, Tk+ + TX uniformly in 

B and Tk, - TX, uniformly in the region G2p n {Z > - N}, where N > 1 is 
any number. It can be shown that T (2, t) is a unique solution of (4), (5), T and T, + 

0 as 2-D - a3 uniformly in t E [0, A] and in addition the estimate (12) holds for T. 
This completes the proof of Lemma 1. 

Let f3O (H) be a Banach space of functions continuous in H together with their de- 
rivatives in 3, with the norm 

il T b,o = II T Ilcc~, + II TX UC(~) 

We denote by VX a set of functions 8 E @to (H) such that 8 (x, 0) = f (3, 8 (0, 
t) = 1, 0 < 8 (z, t) & 1 and 1 8 b.0 & K , and consider in G a boundary value 

problem for the following equation with the boundary conditions (5) 

Tt = T, - ZJ (P (0, 0, (0, 0) Tzc, 0 (5, t) E VK (13) 

According to Lemma 1, there exists a unique solution TB (5, t) of the problem (5), 

(13)s 0~ To@, t)& 1 and the estimates (8) and (12) hold for TB . Therefore we 
can define on the set V, a transformation I; placing the function 0 e V, in corre- 
spondence with the solution Ta (z, t) of the problem (5), (13). From (8) it follows that 

for sufficiently large K we have the inclusion Flr,.~ V,. Using (12) and the fact 

that Ta,.+Oas 5+-oo , we can show that the set FVK is compact in&a (H). 
The operator F is continuous on VK. Indeed,let Ti = FBi, Ui (t) = u (p (t), 8ix (0, 
t)), ftIi E VK, i = 1,2. We set z = TI - TI. The function z (t, t) satisfies the equa- 
tion 

zt = zxlc - UI 0) zx - [url(t) - u, (t)lTe 

and the homogeneous boundary conditions. Therefore the following estimate holds : 

( 14) 

which is similar to the estimate (12). Here B, depends on b, M,, A. Let us assume 
that (1 0, - 0 I lb,o < Y. Then 

ma= I 4, (0, t) 
O,<KA 

- b (07 a I d Y 

Since the function u (p, cp) is continuous with respect to its arguments, then I u1 (t) - 
US (t) I d 8 (y). Therefore the continuity of the operator F follows from the inequality 

(14). 
The set VK is closed and convex in CL0 (H). Consequently by the Schauder theo- 

rem the operator F has a fixed point T, (I, t) in V,. The function T, (z, t) satis- 
fies the equation T, = Tu, - u (P (0, Tz (0, 0) T, (15) 
and conditions (5). Let us set 

t 

s(t) = - 
s ZJ (P (Q, T,, (0, Q) d~ 

0 
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and perform the change of variables r = t, Z’ = x -/- s (t). 

t) = T* (d - s (t), t) 
The functions T,” (z’, 

and s (t) represent a solution of the problem (1) - (3). This 
completes the proof of Theorem 1, 

When 7.6 (p, Cp) are subjected to more severe restrictions, methods of [7] can be used 

to establish the theorem of existence and uniqueness of the solution of the problem (l)- 

(3), relaxing , at the same time, the restrictions imposed on f (a$: 
Theo.rem 2. If u (p, <p) is continuous in p and Lipschitz-continuous in @pt 0 < 

@< M,; f (2) E Cl (- 00, 01, 0 & f (4 sg 1, f (0) = 1, f (4 --+ 0 as 
00, then a unique solution T (x, t), s (t) of the problem (1) - (3) exists in 

tte>F(;) D such that T E. CM (0) n C (D U aD>, se C’ to, Al. 
= 1, U (1, 1) = 1 and f (t) = e”, then the solution of (1) - (3) is of 

the stationary wave type T = @+L, s (t) = -f. The problem of stability of the sta- 
tionary solution under the perturbations of the initial temperature distribution f (z) is 

of interest. Below we formulate and prove a theorem which gives sufficient conditions 

of existence of a stationary solution under a constant pressure. 

Theorem 3. If p (t) E 1, 1 f” (~$1 < lkTeaz where a> 0,the function 

u (cp) = u (1, cp) is Flalder-continuous and decreases monotonously in Cp when cp > 

0, then u (TX (s (t), r)) -+ 1 as t 3 00, and the graph of T (z, t) as a function of 

5 assumes, as t 3 00 , the form of the graph of the function 8 as nearly as required. 

Pro o f, It is sufficient to show that if T (5, t) is a solution of the problem (51, ( 151, 

then [Z’ (2, t) - eXf-+O as t-too uniformlyin zE (- 00, OJ and u(t) = 

U(T3(0, t))-+i as t-+-m. 
Let r = T (k, t) - ex, q = r, = T, (t, t) - ex. The functions I* and Q 

satisfy, in the region G , the equations 

rt = r,, - u (t) r, - (u (t) - 1) er fW 

4t = Qxx - 2.4 (t) qr - (u (t) - 1) e” ( 17) 

In addition, we have r (0, it) = 0, r -+ 0 as II: -+ - 00. 
We multiply (16) by r, (17) by 4, sum the resulting expressions and integrate with re- 

spect to z from - 00 to 0. Since 
0 

s I@ - ~)e”r+(u--I)exq]dz= 
-03 

we have 
0 

a s r=+r 2 0 

at d&C=- 
2 s @x2 ?_ r&) d;r: + 

-0D --m 

rx(o, t) Fax (0, t)- $-rz2 (0, t) 

Since by virtue of (12) u (fp) and T,: (0, t] are colder-continuous with respect to 

their arguments, the function u (t) = U (TX (0, r)) is Halder-continuous in t. From 

the results of [8] it follows that in this case Eq. (15) holds in the closed regions H n 

{t > p}, p > 0. Consequently, r,, (0, t) = u (t) r, (0, t) + u (t) - 1 when 

t > 0 and 
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* G-j-r2 
0 

a 
-z s 2dxE- 

2 s 
(rs” + &J & + 

--cp --m 
(18) 

when d > 0. trsingthe maximnm~ri~~IFle we can obta~~fromthe~onditio~ 1 f” (2) 14 

M-e=” the inequalities 1 T, TX, T,, I< Mleax. Therefore all integrals appearing 
in (18) are meaningful and the order of differentiation with respect to t and integration 
with respect to x can be reversed, 

We shall show that the right-hand side of (18) is nonp~itiv~, Since the function u (cp} 
decreases monotonously and a (1) = 1 for all t > 0 s inequality (u (b) - 1) r, (0, 
t) \< 0 holds. Let us estimate the term u ft) r,” (0, t) / 2 using other terms with 

the corresponding sign. If u (tl) > 2, then 0 & T, (0, tr) < 1 , consequently 
-1 < r, (0, t%) (0. From this we have 

9 irX2 (0, tl) _t (U @I) - 1) r, (0, ti) \< (IS) 

we have 

* r,2 (0, ts) - 
‘! 

s 
trXs (x, tsj + 6k (;1*, t2)1 as = 

--Jo 

- f (rx2 - urxrrx + rk) lt=tla5 < 0 
-m 

From (19) and (20) the n~~i~vene~ of the right&and side of (18) follows. Let us now 
set 

g(t)=t e 'Tax 
-Fo 

Since g (8) > 0 and, as was shown above, g’ It) < 0 for all t > 0, it follows~at 
iL% g (4 = gs > 0 exists. 

Suppose that go > 0. Since r (0, t) = 0, the following inequality holds: 

i 9a~<(+~'( i ~~~a~~'( i rssf 63.1 
-0J 

The inequality (21) czbe proved in the mkiner analogous to that of Theorem 2.2, ch. 3, 
of [3]. Since 0 & T 4 &fs@, we have o 

$ IrPKJ% 

where Bs is independent of t. Therefore from (21) it follows that 
0 

s r*2%W?l>0 

for all f > 0, provided that go > 0. -(*) 
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Let us separate the half-line {t > 0) into three sets: S, = {t: u (t) > 2}, & = 
{t: s/z < u (t) < 2}, s3 = {t: u (t) & */2]. The following inequality holds for 

From a Property of U (cp) it follows that r, (0, t) < -g, ( 0, provided that s/s < 
u (t) < 2. Taking into account (20), we obtain 

g’ (0 ,c (u - 1) rx (0, t) < -g2 / 2 (23) 

for t G Sz. When t E S8, we have o 

g’(r)< -& 1 r,sdx< -&s<O (24) 
-0J 

The inequalities (22)-(24) were obtained under the assumption that go > 0. It follows 
from these inequalities that g’ (t) ( -g, ( 0 for all t > 0 and that g + - 00 

as t + 00. Thus the assumption that go > 0 leads to contradiction. Therefore go = 0 
and 

li.i i r2&=0, fimj rlsdx = 0 
-00 -“# OD 

Since 0 

r*= - S&r&x < i (r2 + rs2> dx 

a! --m 

r --t 0 as t + oo uniformly in 3. The boundedness of the derivative r,, and the fact 
that 7‘ (0, t) = 0 , imply that r, (0, t) + 0 as t -+ 00. Therefore r= (0, t} + 1 
and u (t) + 1 as t + 00. This completes the proof of Theorem 3. 

The author thanks 0. A. Oleinik and V, B. Librovich for the attention given and the 
valuable comments. 
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